A GATA Transcription Factor Recruits Hda1 in Response to Reduced Tor1 Signaling to Establish a Hyphal Chromatin State in Candida albicans
نویسندگان
چکیده
Candida albicans is an important opportunistic fungal pathogen of immunocompromised individuals. One critical virulence attribute is its morphogenetic plasticity. Hyphal development requires two temporally linked changes in promoter chromatin, which is sequentially regulated by temporarily clearing the transcription inhibitor Nrg1 upon activation of the cAMP/PKA pathway and promoter recruitment of the histone deacetylase Hda1 under reduced Tor1 signaling. Molecular mechanisms for the temporal connection and the link to Tor1 signaling are not clear. Here, through a forward genetic screen, we report the identification of the GATA family transcription factor Brg1 as the factor that recruits Hda1 to promoters of hypha-specific genes during hyphal elongation. BRG1 expression requires both the removal of Nrg1 and a sub-growth inhibitory level of rapamycin; therefore, it is a sensitive readout of Tor1 signaling. Interestingly, promoters of hypha-specific genes are not accessible to Brg1 in yeast cells. Furthermore, ectopic expression of Brg1 cannot induce hyphae, but can sustain hyphal development. Nucleosome mapping of a hypha-specific promoter shows that Nrg1 binding sites are in nucleosome free regions in yeast cells, whereas Brg1 binding sites are occupied by nucleosomes. Nucleosome disassembly during hyphal initiation exposes the binding sites for both regulators. During hyphal elongation, Brg1-mediated Hda1 recruitment causes nucleosome repositioning and occlusion of Nrg1 binding sites. We suggest that nucleosome repositioning is the underlying mechanism for the yeast-hyphal transition. The hypha-specific regulator Ume6 is a key downstream target of Brg1 and functions after Brg1 as a built-in positive feedback regulator of the hyphal transcriptional program to sustain hyphal development. With the levels of Nrg1 and Brg1 dynamically and sensitively controlled by the two major cellular growth pathways, temporal changes in nucleosome positioning during the yeast-to-hypha transition provide a mechanism for signal integration and cell fate specification. This mechanism is likely used broadly in development.
منابع مشابه
Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity
Candida albicans is able to undergo reversible morphological changes between yeast and hyphal forms in response to environmental cues. This morphological plasticity is essential for its pathogenesis. Hyphal development requires two temporally linked changes in promoter chromatin, which is sequentially regulated by temporarily clearing the transcription inhibitor Nrg1 upon activation of cAMP/pro...
متن کاملHyphal Development in Candida albicans Requires Two Temporally Linked Changes in Promoter Chromatin for Initiation and Maintenance
Phenotypic plasticity is common in development. For Candida albicans, the most common cause of invasive fungal infections in humans, morphological plasticity is its defining feature and is critical for its pathogenesis. Unlike other fungal pathogens that exist primarily in either yeast or hyphal forms, C. albicans is able to switch reversibly between yeast and hyphal growth forms in response to...
متن کاملThe Protein Kinase Tor1 Regulates Adhesin Gene Expression in Candida albicans
Eukaryotic cell growth is coordinated in response to nutrient availability, growth factors, and environmental stimuli, enabling cell-cell interactions that promote survival. The rapamycin-sensitive Tor1 protein kinase, which is conserved from yeasts to humans, participates in a signaling pathway central to cellular nutrient responses. To gain insight into Tor-mediated processes in human fungal ...
متن کاملSch9 kinase integrates hypoxia and CO2 sensing to suppress hyphal morphogenesis in Candida albicans.
The yeast-hypha transition is an important virulence trait of Candida albicans. We report that the AGC kinase Sch9 prevents hypha formation specifically under hypoxia at high CO(2) levels. sch9 mutants showed no major defects in growth and stress resistance but a striking hyperfilamentous phenotype under hypoxia (<10% O(2)), although only in the presence of elevated CO(2) levels (>1%) and at te...
متن کاملHOS2 and HDA1 Encode Histone Deacetylases with Opposing Roles in Candida albicans Morphogenesis
Epigenetic mechanisms regulate the expression of virulence traits in diverse pathogens, including protozoan and fungi. In the human fungal pathogen Candida albicans, virulence traits such as antifungal resistance, white-opaque switching, and adhesion to lung cells are regulated by histone deacetylases (HDACs). However, the role of HDACs in the regulation of the yeast-hyphal morphogenetic transi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2012